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A simple formula for calculating porosity of magma in volcanic conduits
during dome-forming eruptions
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We present a simple formula for analyzing factors that govern porosity of magma in dome-forming eruptions.
The formula is based on a 1-dimensional steady conduit flow model with vertical gas escape, and provides the
value of the porosity as a function of magma flow rate, magma properties (viscosity and permeability), and
pressure. The porosity for a given pressure depends on two non-dimensional numbers ε and θ . The parameter
ε represents the ratio of wall friction force to liquid-gas interaction force, and is proportional to the magma
viscosity. The parameter θ represents the ratio of gravitational load to liquid-gas interaction force and is inversely
proportional to the magma flow rate. Gas escape is promoted and porosity decreases with increasing ε or θ .
From the possible ranges of ε and θ for typical magmatic conditions, it is inferred that the porosity is primarily
determined by ε at the atmospheric pressure (near the surface), and by θ at higher pressures (in the subsurface
region inside the conduit). The porosity near the surface approaches 0 owing to high magma viscosity regardless
of the magnitude of the magma flow rate, whereas the subsurface porosity increases to more than 0.5 with
increasing magma flow rate.
Key words: Conduit flow, dome-forming eruptions, magma porosity, gas escape from magma.

1. Introduction
As silicic volatile-rich magma ascends to the surface and

decompresses in volcanic conduits, the magma vesiculates
and its porosity (i.e., gas volume fraction) increases. The
porosity changes with depth owing to the competition be-
tween the vesiculation and escape of gas from the magma.
When gas escape occurs efficiently, the porosity decreases,
which may lead to an effusion of a lava dome with a low
porosity (Eichelberger et al., 1986; Jaupart and Allegre,
1991; Woods and Koyaguchi, 1994). Recent numerical
studies have revealed that the porosity critically depends
on magma properties such as viscosity and permeability in
dome-forming eruptions and that complex porosity profiles
may result as viscosity, permeability, or both change with
depth; the porosity increases in the subsurface region, and
then decreases near the surface (e.g., Melnik and Sparks,
1999; Diller et al., 2006). However, the relationships be-
tween porosity and viscosity and between porosity and per-
meability are still unclear, which makes it difficult to under-
stand the mechanism through which the complex porosity
profiles are formed.

In this study, we derive a simple formula for calculat-
ing the porosity in dome-forming eruptions as a function of
the magma properties and geological conditions. This for-
mula is based on a 1-dimensional steady conduit flow model
that considers vertical gas escape from magma. This for-
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mula enables us to systematically investigate how porosity
changes in response to changes in viscosity and permeabil-
ity during magma ascent and also to identify the essential
effects controlling the porosity profile in the conduit.

2. A Formula for Calculating Porosity
Here, we consider a 1-dimensional steady flow through

a cylindrical conduit with a constant radius where the ver-
tical relative motion between the gas and the liquid phases
(i.e., vertical gas escape) is taken into account (Kozono and
Koyaguchi, 2009a). As the magma ascends from depth,
volatiles exsolve and bubbles are nucleated, and the flow
takes a form in which bubbles are suspended in a contin-
uous liquid phase (bubbly flow). As the magma ascends
further, bubbles connect and paths for gas flow are formed.
The flow takes a form in which both the gas and the liquid
are continuous phases, which results in efficient vertical gas
escape as permeable flow (Fig. 1).

The basic equations for the above model are expressed
by

ρl ul(1 − φ) = (1 − n)q, (1)

ρg ug φ = nq, (2)

ρl ul(1−φ)
dul

dz
= −(1−φ)

dP

dz
−ρl(1−φ)g+Flg−Flw, (3)

ρg ug φ
dug

dz
= −φ

dP

dz
− ρg φ g − Flg, (4)

P = ρg RT, (5)

and

n = n0 − s P1/2

1 − s P1/2
(n ≥ 0), (6)
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Bubbly flow

Permeable flow

Fig. 1. Schematic illustration of flow style in a conduit during
dome-forming eruptions assumed in this study. The flow style changes
from bubbly to permeable flow during magma ascent. See text for detail.

where ul and ug are the vertical velocities of the liquid
and the gas respectively, ρl (= 2500 kg m−3) and ρg are
the densities of the liquid and the gas respectively, φ is
the gas volume fraction (i.e., the porosity), n is the gas
mass-flow-rate fraction, q is the mass flow rate (per unit of
cross-section area; kg m−2 s−1), z is the vertical coordinate
measured positive upwards, P is the pressure of the magma,
g is the acceleration due to gravity, Flg is the interaction
force between the liquid and the gas, Flw is the friction
force between the liquid and the conduit wall, R is the gas
constant (462 J kg−1 K−1 for H2O gas), T is the magma
temperature, n0 is the initial H2O content, and s is the
saturation constant (4.11×10−6 Pa−1/2 for silicic magmas).

Equations (1) and (2) describe the mass conservations
of the liquid and the gas respectively, and Eqs. (3) and
(4) the momentum conservations of the liquid and the gas
respectively. Equation (5) is the equation of state for the gas
phase, and Eq. (6) represents the mass-flow-rate fraction
of the gas when equilibrium gas exsolution on the basis
of the solubility curve of H2O in a magma (Burnham and
Davis, 1974) is assumed. We also assume that temperature
change due to expansion is negligible because of the large
heat capacity of the liquid magma; therefore, the energy
equation is not solved.

The constitutive equation of Flw is given by the form for
a Poiseuille flow of the liquid adjacent to the cylindrical
conduit wall (Wilson et al., 1980):

Flw = 8µ

r2
c

ul, (7)

where µ is the magma viscosity and rc is the conduit radius.
Under the assumption that the vertical gas escape occurs on
the basis of Darcy’s law, the constitutive equation of Flg is
given by

Flg = µg

k
φ2(ug − ul), (8)

where µg is the gas viscosity (set to be 10−5 Pa s in this
study) and k is the permeability of magma. In the bubbly

flow region, Flg is given by
3µ

r2
b

φ(1−φ)(ug−ul) where rb is

the bubble radius. For typical bubble sizes (0.001–10 mm)
in silicic magma (µ > 105 Pa s), the relative velocity in this
region is sufficiently small and the flow is essentially same
as flow without a relative velocity difference (Kozono and
Koyaguchi, 2009a).

In dome-forming eruptions, the inertia terms (the left-
hand sides of Eqs. (3) and (4)) are negligibly small (e.g.,
Kozono and Koyaguchi, 2009a). Therefore, Eqs. (3) and
(4) with the approximation of ρl � ρg yield:

−Flg + φFlw + φ(1 − φ)ρlg = 0. (9)

The first, second and third terms in the left-hand side of this
equation represent the effects of the gas-liquid interaction
force, the wall friction force and the gravitational load,
respectively. This equation implies that the porosity of
magma during dome-forming eruptions is controlled by a
simple balance of these three effects.

In order to evaluate the relative importance of these three
effects, we rewrite Eq. (9) using Eqs. (1), (2), (5), (7) and
(8) as

1 − nρl RT (1 − φ)

(1 − n)Pφ
+ ε + 1 − φ

1 − n
θ = 0, (10)

where

ε = 8µk

µg r2
c φ

(11)

and

θ = k ρ2
l g(1 − φ)

µg q φ
. (12)

Here, the non-dimensional number ε represents the ratio of
effects of the wall friction force to the liquid-gas interaction
force, and the non-dimensional number θ represents the
ratio of effects of the gravitational load to the liquid-gas
interaction force. On the basis of Eq. (10), we can calculate
the porosity φ as a function of the magma properties such
as the viscosity µ and the permeability k, the conduit radius
rc, and the mass flow rate q for a given pressure P .

Figure 2 is a diagram showing the relationships among
ε, θ and φ for a given pressure on the basis of Eq. (10).
The figure shows that the magnitude of φ decreases with
increasing ε or θ . This tendency is explained in the fol-
lowing way. As ε increases, the effect of the wall friction
force increases (see Eq. (11)); as a result, the ascent of the
liquid is suppressed, whereas the gas ascends easily. As θ

increases, the effect of the liquid-gas interaction force de-
creases (see Eq. (12)), and allows the gas to separate from
the dense liquid efficiently. These two effects promote gas
escape from magma, leading to the decrease in φ.

Figure 2 shows that φ depends on ε alone for ε � θ , and
depends on θ alone for ε � θ . From Eq. (10), we obtain the
forms of φ in the limits of ε � θ (i.e., θ → 0) and ε � θ

(i.e., ε → 0) as

φ|θ→0 = A

ε + A + 1
(13)

and

φ|ε→0 = 1

2
+ (A + 1)(1 − n)

2θ
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Fig. 2. Relationships among non-dimensional parameters ε and θ and porosity (φ) for n0 = 0.04 and T = 1123 (K) on the basis of Eq. (10). (a)
Results for P = 0.1 (MPa); (b) results for P = 10 (MPa). Possible ranges of ε and θ estimated from typical values of µ, k, rc, q and φ for actual
dome-forming eruptions (µ = 1011–1014 Pa s for (a) and 105–108 Pa s for (b), k = 10−14–10−12 m2, rc = 10–50 m, q = 0.1–10 kg m−2 s−1 and
φ = 0.1–0.8) are also shown (dashed squares). The range of µ for (a) is estimated from the viscosities of lava domes under dry conditions (Kozono
and Koyaguchi, 2009b); the range of µ for (b) is estimated to cover both the viscosities at the magma chamber (Kozono and Koyaguchi, 2009b) and
the viscosity at P = 10 (MPa) using Eq. (16). See Eqs. (11) and (12) for the definitions of ε and θ , respectively.

−
√[

1

2
− (A + 1)(1 − n)

2θ

]2

+ 1 − n

θ
(14)

respectively, where

A = nρl RT

(1 − n)P
. (15)

3. Comparison with the Result Based on Eqs. (1)–
(8)

In the 1-dimensional steady conduit flow models, the
porosity of magma is determined by solving the differential
equations (i.e., Eqs. (1)–(8)) as a two-point boundary value
problem (referred to as “DE-2BV”). The boundary condi-
tion at the bottom end of the conduit is that the pressure is
equal to the pressure at the magma chamber and ug = ul,
and the boundary condition at the vent is that the pressure is
equal to the atmospheric pressure. The variations of physi-
cal quantities such as φ, ul, ug and P with depth throughout
the conduit and the value of the mass flow rate q are ob-
tained such that the boundary conditions are satisfied. On
the other hand, Eq. (10) provides an algebraic expression of
φ for a given ε, θ , and P . This formula cannot determine
the value of q as DE-2BV does, but determines the rela-
tionships among φ, µ, and k at a given pressure when the
value of q is somehow known. Because Eq. (10) is valid
for general forms of µ and k, it is useful for studying how
φ varies as µ and k change with depth in a complex way.
In this section, we demonstrate that Eq. (10) can correctly
estimate the porosity as a function of P for realistic forms
of µ and k when the value of q is given as a parameter.

We take into account the effects of dissolved H2O content
and crystal content on the magma viscosity:

µ = µl(c) fµ(β), (16)

where µl is the liquid viscosity expressed by a function
of the mass fraction of dissolved water in the liquid c(=

s P1/2), and fµ(β) is a function that represents the influence
of volume fraction of crystals β on viscosity. The forms
of µl(c) and fµ(β) are determined from the models by
Hess and Dingwell (1996) and Costa (2005), respectively.
The increase in β during magma ascent is assumed to be
caused by crystallization of microlites. We can express the
volume fraction of microlites of the groundmass βmi as a
function of P using a power law fit for the experimental
data of crystal growth kinetics for the 1995–1999 eruption
of Soufrière Hills Volcano, Montserrat (Couch et al., 2003).
In the fitting process, we use the data from the multiple
decompression experiments shown in figure 8 of Couch et
al. (2003) and assume that βmi = 0.5 at P = 0.1 MPa as
a reference. As a consequence, β is expressed by βph +
0.3361(10−6 P)−0.18955(1 − βph) where βph is the volume
fraction of phenocrysts. Because both c and β primarily
depend on P , µ can be approximated by a function of P .

The permeability k is expressed as a function of φ:

k = k0 fk(φ), (17)

where k0 is a magnitude-defining constant and fk(φ) is a
function that represents the influence of φ on the perme-
ability. We tentatively assume that the values of k0 and the
form of fk(φ) are determined from the model of k-φ re-
lationship for effusive products by Mueller et al. (2005);
k0 = 1 × 10−17 (m2), and fk(φ) = (100φ)3.

Figure 3(a, b, d, e) shows the results, based on DE-2BV
and Eq. (10), of the changes in porosity and velocities as
a function of P during magma ascent from the magma
chamber to the vent, in which Eqs. (16) and (17) are used
for µ and k, respectively. In order to obtain the value of θ in
Eq. (10), we used the value of q determined from DE-2BV.
As magma ascends and decompresses, the increase in the
porosity is suppressed (Fig. 3(a, d)) owing to efficient gas
escape (i.e., the increase in the relative velocity between
the gas and the liquid; Fig. 3(b, e)), leading to the flow
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Fig. 3. Representative results of variations of porosity (a, d), velocities of the liquid and the gas (b, e), and the parameters ε and θ (c, f) as a function
of P during magma ascent from the magma chamber to the vent. The parameters used for the calculation are rc = 10 m, T = 1123 K, n0 = 0.04,
L = 4000 m and P0 = 100 MPa where L is conduit length and P0 is pressure at the magma chamber. (a, b, c) Results for βph = 0.4 and q = 13.35
kg m−2 s−1; (d, e, f) results for βph = 0.55 and q = 0.11 kg m−2 s−1. In (a), (b), (d) and (e), red and green curves show the results based on DE-2BV
and Eq. (10), respectively. The results of ul and ug as a function of P based on Eq. (10) in (b) and (e) are obtained by substituting φ(P) into Eqs. (1)
and (2). The result for the flow without gas escape is also shown in (a) and (d) (dashed and dotted curve).

reaching the vent with a low porosity. The result of Eq. (10)
compares well with that of DE-2BV in a quantitative sense
and also successfully captures the complex features of the
porosity profile in conduits (Fig. 3(a, d)).

The above results show that if the value of q is known,
Eq. (10) can correctly determine the porosity as a function
of P for realistic forms of µ and k. In actual eruptions,
the value of q can be estimated from field observations. In
addition, we know that P at the surface is atmospheric and
that P in the subsurface region is greater than atmospheric.
Therefore, we can evaluate how the porosity at the surface
or in the subsurface region is controlled by the variations of
µ and k on the basis of Eq. (10).

4. Geological Implications
During dome-forming eruptions, magma porosity

changes through the competing effects of the magma
vesiculation and the gas escape from magma. According
to field observations, the porosity of lava domes typically
ranges from 0 to 0.5 (e.g., Melnik and Sparks, 2002;
Kueppers et al., 2005; Mueller et al., 2005). On the other
hand, Clarke et al. (2007) showed that the porosity in the
subsurface region where the pressure is higher than about
10 MPa can be as large as 0.5–0.7, as was the case for the

pre-explosion (dome growth) state of the 1997 events in
Soufrière Hills Volcano, Montserrat (SHV). We discuss the
mechanism for these observed porosity distributions to be
generated on the basis of our simple formula, Eq. (10).

Figure 2 describes how the porosity near the surface
(P = 0.1 MPa) and that in the subsurface region (P =
10 MPa) depend on ε and θ on the basis of Eq. (10). In
this diagram, possible ranges of ε and θ estimated from the
typical values of µ, k, rc and q for actual dome-forming
eruptions are shown. Generally, the value of ε increases
dramatically with decreasing P in response to the increase
in µ (Fig. 3(c)). This effect is taken into consideration for
the possible range of ε in Fig. 2. At pressures near the sur-
face (P = 0.1 MPa), the porosity depends on ε and is un-
affected by θ (Fig. 2(a)). On the other hand, at pressures in
the subsurface region (P = 10 MPa), the porosity depends
on θ rather than on ε (Fig. 2(b)).

The above results show that the increase in the magma
viscosity plays an important role in explaining the low
porosity (close to zero) near the surface observed in lava
domes. The porosity near the surface decreases with in-
creasing ε (Fig. 2(a)). Considering that the permeability de-
creases with decreasing porosity (e.g., Mueller et al., 2005)
and that there is not a large variation of rc, the increase in
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Fig. 4. Relationships among ε, θ and φ in the case where the effect of lateral gas escape from magma is taken into account on the basis of Eq. (A.3) for
Ew = 0.8. Dashed squares are as in Fig. 2.

ε is ascribed to the increase in the magma viscosity (see
Eq. (11)). The viscosity drastically increases in the region
near the surface because of volatile exsolution and crystal-
lization. As a result, the ascent of the liquid is suppressed
owing to large wall friction force, whereas the gas ascends
easily (i.e., efficient gas escape). For example, when the
viscosity near the surface increases up to 1014 Pa s, ε can be-
come larger than 103, which leads to a porosity smaller than
0.2 (Fig. 2(a)). The porosity near the surface remains low
even when the mass flow rate is high, because the porosity
in this region is insensitive to θ (Fig. 2(a)).

In contrast, the porosity in the subsurface region is sen-
sitive to θ (Fig. 2(b)). This indicates that the increase in
the mass flow rate plays a major role in explaining the high
porosity in the subsurface region estimated for SHV (0.5–
0.7). Considering again the permeability-porosity relation-
ship, the increase in mass flow rate results in a decrease in
θ (see Eq. (12)), which in turn leads to an increase in sub-
surface porosity (see Fig. 2(b)). For the possible ranges of ε

and θ in Fig. 2(b), the porosity φ is larger than 0.5 when θ is
smaller than about 1. In the case of k ∼ 10−12 m2 (the value
for SHV when φ = 0.5–0.7; Melnik and Sparks, 2002), the
mass flow rate q must exceed 5 kg m−2 s−1 for θ < 1. (e.g.,
compare Fig. 3(a–c) with Fig. 3(d–f)). This estimation is
consistent with the observation that q at the pre-explosion
state of the 1997 events in SHV reached about 28 kg m−2

s−1 (Sparks et al., 1998). We suggest that the high flow
rate immediately prior to the explosive activity induced the
increase in the subsurface porosity.

Equation (10) can be extended to the case where the
effect of lateral gas escape from magma (e.g., Jaupart and
Allegre, 1991; Woods and Koyaguchi, 1994; Diller et al.,
2006) is taken into account (see Appendix). When this
effect is considered, the isopleths of the porosity in Fig. 2
shift to the left and downward (Fig. 4), which indicates that
the porosity diminishes for relatively low ε or θ . However,
even if the lateral gas escape occurs efficiently (the ratio of
the lateral to vertical gas flow rates Ew is 0.8; Fig. 4), the
present conclusion that porosity near the surface depends
on ε (i.e., µ) and that porosity in the subsurface region

depends on θ (i.e., q) is unchanged. Equation (10) can
also be extended to the case where conduit geometry varies
(de’Michieli Vitturi et al., 2008) by taking into account the
variation of rc in Eq. (10).

In conclusion, we have derived a simple formula for cal-
culating the porosity of magma in dome-forming eruptions
as a function of mass flow rate, magma properties such as
the viscosity and the permeability, and pressure. On the
basis of this formula, we have shown that the increase in
the magma viscosity due to volatile exsolution and crys-
tallization near the surface plays a key role in the forma-
tion of a porosity distribution in dome-forming eruptions.
The porosity near the surface approaches 0 owing to the
high magma viscosity regardless of the magnitude of the
mass flow rate, whereas the subsurface porosity increases
to more than 0.5 with increasing mass flow rate. In or-
der to understand the mechanism of the porosity change in
dome-forming eruptions, we need to quantitatively evaluate
complex effects of the magma properties such as degassing-
induced crystallization (e.g., Melnik and Sparks, 2005),
non-Newtonian rheology of crystal-bearing magma (e.g.,
Caricchi et al., 2007), and various relationships between
permeability and porosity (e.g., Eichelberger et al., 1986;
Takeuchi et al., 2005). The simple formula obtained in this
paper (Eq. (10)) will be useful for systematically analyz-
ing the relationship between these complex effects of the
magma properties and the conduit flow dynamics.
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Appendix A. The Effect of Lateral Gas Escape
In this appendix we show how the simple formula

(Eq. (10)) is extended when the effect of lateral gas escape
from magma to the conduit wall is taken into account. Here,
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we introduce a parameter expressing the degree of the lat-
eral gas escape as:

Ew = qw

nq
, (A.1)

where qw is the flow rate of the gas escaping laterally. This
parameter represents the ratio of the lateral gas flow rate to
the vertical gas flow rate. Using Ew, the mass conservation
equation of the gas (Eq. (2)) is rewritten by

ρg ug φ = nq(1 − Ew). (A.2)

From Eqs. (1), (5), (7), (8), (9) and (A.2), we obtain the
formula for calculating the porosity in the case where the
lateral gas escape is considered:

1 − nρl RT (1 − φ)

(1 − n)Pφ
(1 − Ew) + ε + 1 − φ

1 − n
θ = 0. (A.3)
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